Risk-Informed Approach to Penstock Safety

NW Hydro Users Group September 25, 2012

Penstock Risk Assessment

Failure Modes

Consequences

FERC Database

- Geotechnical Issues (23)
- Deterioration (21)
- **■** Vacuum (15)
- **■** Flood (6)
- Water Hammer (5) 3 included some degree of operator error
- Fabrication Errors (4)
- Couplings (4)
- Ground Water/Operator Error (1 each)
- Other/Unknown (10)

Hazards by Regions

	Total	ARO	CRO	NYRO	PRO	SFRO
Unknown	2	0	0	2	0	0
Coupling	4	0	0	1	1	2
Deterioration	21	1	2	8	8	2
Fabrication	4	0	0	0	2	2
Flood	6	0	0	5	1	0
Geotechnical	23	3	0	2	8	10
Ground Water	1	1	0	0	0	0
Operation	1	0	0	1	0	0
Other	8	2	1	1	3	1
Vacuum	15	0	1	6	6	2
Water Hammer	5	0	0	0	1	4
Total	90	7	4	26	30	23

FERC Penstock Data

	ARO	CRO	NYRO	PRO	SFRO
Ave. Head	231	155	93	306	724
Max. Head	1380	854	1148	2387	2616
Min. Head	14	18	3	14	6
Ave. Diameter	12	10	10	8	5
Max. Diameter	26	49	30	28	25
Min. Diameter	2	2	<1	<1	<1
Ave. Length	478	846	519	2024	3698
Max. Length	6590	19000	18412	65472	42000
Min. Length	2	5	10	10	2

All data in feet

Geotechnical/Geological

- Soil/Rock movement including landslides
- Rockfall
- Bearing failure

Equipment Malfunction

- Vacuum
 - Air valve failure
 - Debris plugging air vents
 - Icing of air vents
 - Mis-operation
- Water Hammer
 - Governor failure / wear
 - Wicket gate failure
 - Pelton needle failure
 - Mis-operation

Aging/Deterioration

- Lack of Maintenance
- Erosion of invert
- Stress-Corrosion Cracking
- Cavitation
- Acidic Soil

Fabrication

Flood

Consequences

- Reconstruction
 - Penstock
 - Powerhouse
 - Switchyard
- Lost Generation
- Property Damage
- Loss of Life
- Environmental Mitigation

Risk-Informed Approach to Penstock Safety

Percentage of PG&E Penstocks Older Than Given Year

R&D Program

- Establishment of penstock database
- Development of risk assessment program

Penstock Database

- MS Access format
- Included information on:
 - Head
 - Flow
 - Material
 - Length
 - Thickness
 - Age
 - etc.

Risk Assessment Methodology

- Focuses on:
 - Hazards
 - Consequences
- Determines Risk

Definitions

- Hazard Conditions that by themselves or in conjunction with other conditions can lead to a penstock failure - expressed in terms of occurrences/year
- Consequence Damages that may occur in the event of a failure expressed in terms of \$ (Life safety consequences were not considered)
- Risk The product of Hazards and Consequences expressed in terms of \$/year
- Probabilistic Risk Assessment
 - A range of possible values is estimated for the probability of occurrence for pertinent hazards and consequences
 - The program determines the probabilistic risk for each penstock

Hazards Considered

- Geotechnical
- Hydrologic
- Seismic
- Equipment Malfunction
- Site Specific

Consequences Considered

- Pipe replacement
- Geotechnical stabilization
- Damage to powerhouse
- Damage to switchyard/transmission facilities
- Lost generation
- Property damage
- Environmental damage

Cost Spreadsheet

	C1 - Pipe Replacement				C2 - Geotechnical				C3 - Powerhouse					
Name	Cmin	Сехр	Cmax	Std Dev.	Cstoch1	Cmin	Сехр	Cmax	Cstoch2	Pstrike	Cmin	Сехр	Cmax	Cstoch3
A1	908	2214	3820	221	2210	2500	5000	15000	5438	1.00	0	5000	10000	3675
A2	962	1202	1442	120	1194	2500	5000	15000	5323	1.00	0	500	1000	365
A3	561	962	1442	96	964	2500	5000	15000	5283	1.00	0	250	500	187
	C4 - Switchyard/Transmission					C5 - Lost Generation			C6 - Property Damage					
	Cmin	Сехр	Cmax	Cstoch4		Cmin	Сехр	Cmax	Cstoch5	Cmin		Сехр	Cmax	Cstoch6
	2700	5400	16200		5739	1,219	2,439	7,316	2534		2000	4000	12000	4274
	2700	5400	16200		5666	114	227	682	242		2000	4000	12000	4237
	2700	5400	16200		5754	93	187	560	197		2000	4000	12000	4237
	C7 - Enviro			onment		Total Break Cost								
	Cmin Cexp Cmax		Cstoch7		CTmin CTstoch		CTmax							
	4000	8000	24000		8520	32,390								
	400	800	2400		857			17,885						
	200	400	1200		429			17,051						

Typical Page From Hazard Spreadsheet

	Hazard 1 - Geotechnical												
	Leak Before B	Failure Probability				Leak Before Break Prob.				Failure	Risk		
Name	Break Cost	CTstoch	fmin	fexp	fmax	fstoch1	Lmin	Lexp	Lmax	Lstoch	Cost	\$ per Year	
A 1	1,000	32,390	0	0.0015	0.0075	0.0013	0	0.83	1	0.73	9,516	12	
A 2	1,000	17,885	0	0.0015	0.0075	0.0013	0	0.83	1	0.73	3,870	5	
A 3	1,000	17,051	0	0.0015	0.0075	0.0013	0	0.83	1	0.74	3,729	5	

Hazards Considered

- Geotechnical
- Hydrologic (flood, storms, etc.)
- Seismic
- Equipment Malfunction
- Other Site Specific Hazards

Typical probability density functions for hazards and risks

Typical probability density functions for hazards and risks

Top 10 List

Rank	Facility	Critical Hazard	Est. Failure Probability (ocurr/yr)	Est. Conseq Related to Crit Hazard (1000\$/yr)	Risk (1000\$/yr)	Comments
1	В	Geotechnical	0.0510	51,988	2,650	On-going monitoring program. Project is underway to stabilize slope of siphon.
2	C 2	Geotechnical	0.0486	50,935	2,473	On-going monitoring program. Analyses underway to determine extent of slope instability.
3	P 5	Geotechnical	0.0076	59,657	455	Monitoring program in place.
4	P 3	Equip Malfunction	0.0012	73,263	84	
5	C 1	Equip Malfunction	0.0012	67,677	83	Project underway to replace governors.
6	Н	Equip Malfunction	0.0003	301,506	81	High risk is due to high consequences of failure. There is little that can be done to reduce risk. High risk emphasizes need for proper maintenance and careful operation.
7	Н	Geotechnical	0.0015	53,611	79	High risk is due to high consequences of failure. There is little that can be done to reduce risk. High risk emphasizes need for proper maintenance and careful operation.
8	P 1	Equip Malfunction	0.0012	67,780	78	Project underway to improve equipment operation.
9	D 1	Equip Malfunction	0.0012	56,636	67	Needs testing and analysis.
10	K	Equip Malfunction	0.0012	42,359	50	Needs testing and analysis.

Benefits From Development of Penstock Risk Assessment Program

- Can use data from PMO type studies to evaluate penstocks
- Procedure can be used for other types of projects
- Procedure can be used to evaluate need for studies

Consequences of Penstock Failure

- Life Safety Relatively low
- Economic Can be relatively high

Findings

- Material degradation generally not a problem
- Older control systems often are unable to limit pressure rises
- Most failures of in-service penstocks were due to equipment malfunction or geotechnical failure

Things to Consider

- Appropriate inspection/testing
- Potential damage due to inspection
- Evaluation of inspection/testing

Why Inspect Water Conveyance Systems?

- Potential for loss of life
- Potential for environmental damage
- Potential for very large expenditure by licensee

Key Inspection Items

- Geotechnical considerations
- Transient Pressures
- Material Problems

Issues

- Operation issues
- Access for inspections
- Inspection opportunities in current power market

Risk Reduction

You Don't Always Win

Caribou 1 Penstock

Caribou 1 PH

Caribou 2 PH

Caribou 2

Penstock

Thoughts

- Risk can help you make better, more informed decisions related to penstocks and other water conveyance facilities.
- You will need the best available information if you want good results

Garbage in, Garbage out

■ Sharing our knowledge of penstock incidents will improve everyone's operational safety.